Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Front Oncol ; 14: 1373760, 2024.
Article in English | MEDLINE | ID: mdl-38646436

ABSTRACT

Colorectal cancer, with the liver being the most common site of distant metastasis, followed by the lungs and bones. Although reports of metastasis to the testis exist, paratesticular metastasis is extremely rare. A 37-year-old male presented with scrotal swelling. Ultrasound revealed hydrocele of the tunica vaginalis. The patient underwent routine surgical treatment, and postoperative pathology of the tunica vaginalis indicated adenocarcinoma of gastrointestinal origin. Colonoscopic biopsy confirmed adenocarcinoma of the sigmoid colon. After six months of systemic therapy, tumor reduction surgery was performed in conjunction with tunica vaginalis excision. Postoperative pathology suggested histological similarity in both sites, with immunohistochemistry results supporting the diagnosis of sigmoid colon adenocarcinoma metastasizing to the tunica vaginalis. We conducted a literature review, summarizing and discussing clinical presentations, metastatic pathways, and diagnostic approaches.

2.
Anim Genet ; 55(1): 99-109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38087834

ABSTRACT

Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.


Subject(s)
Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C , Animals , Mice , Fibrosis , Kidney/metabolism , Kidney/pathology , Mutation , Niemann-Pick C1 Protein/genetics , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology
3.
Front Immunol ; 14: 1244159, 2023.
Article in English | MEDLINE | ID: mdl-37901240

ABSTRACT

Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods: We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results: We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion: Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.


Subject(s)
Sulindac , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Sulindac/pharmacology , Sulindac/therapeutic use , Amyloid Precursor Protein Secretases , Triple Negative Breast Neoplasms/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Disease Models, Animal
4.
Adv Cancer Res ; 159: 1-36, 2023.
Article in English | MEDLINE | ID: mdl-37268393

ABSTRACT

The Notch signaling pathway is an evolutionary conserved signal transduction cascade that is critical to embryonic and postnatal development, but aberrant Notch signaling is also implicated in tumorigenesis of many organs including the pancreas. Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy in the pancreas, with a dismally low survival rate due to the late-stage diagnosis and peculiar therapeutic resistance. Upregulation of the Notch signaling pathway has been found in preneoplastic lesions as well as PDACs in genetically engineered mouse models and human patients, and inhibition of the Notch signaling suppresses tumor development and progression in mice as well as patient-derived xenograft tumor growth, suggesting a critical role for Notch in PDAC. However, the role of Notch signaling pathway remains contentious, exemplified by differential functions of Notch receptors and contrasting outcomes of abolishing Notch signaling in murine PDAC models with distinct cell-of-origin or at different stages. Glycosylation of Notch receptors represents a powerful regulatory mechanism of Notch signaling, and its functional significance in PDAC has begun to emerge. Beyond its impact on tumor cells, Notch signaling is an important regulator of the components of pancreatic tumor microenvironment, including blood vasculature, stellate cells, fibroblasts, and immune cells. Finally, Notch may act as a tumor suppressor in pancreatic neuroendocrine tumor, the second most common pancreatic neoplasm with the incidence on rise. This review summarizes the research on the complex roles of Notch signaling in pancreatic tumorigenesis and the development of potential Notch-targeting therapies for pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Pancreatic Neoplasms/metabolism , Cell Transformation, Neoplastic , Carcinogenesis , Signal Transduction , Carcinoma, Pancreatic Ductal/metabolism , Pancreas/metabolism , Pancreas/pathology , Receptors, Notch/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
5.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36828547

ABSTRACT

The transcription factor Prdm16 functions as a potent suppressor of transforming growth factor-beta (TGF-ß) signaling, whose inactivation is deemed essential to the progression of pancreatic ductal adenocarcinoma (PDAC). Using the KrasG12D-based mouse model of human PDAC, we surprisingly found that ablating Prdm16 did not block but instead accelerated PDAC formation and progression, suggesting that Prdm16 might function as a tumor suppressor in this malignancy. Subsequent genetic experiments showed that ablating Prdm16 along with Smad4 resulted in a shift from a well-differentiated and confined neoplasm to a highly aggressive and metastatic disease, which was associated with a striking deviation in the trajectory of the premalignant lesions. Mechanistically, we found that Smad4 interacted with and recruited Prdm16 to repress its own expression, therefore pinpointing a model in which Prdm16 functions downstream of Smad4 to constrain the PDAC malignant phenotype. Collectively, these findings unveil an unprecedented antagonistic interaction between the tumor suppressors Smad4 and Prdm16 that functions to restrict PDAC progression and metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , DNA-Binding Proteins , Pancreatic Neoplasms , Smad4 Protein , Transcription Factors , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Smad4 Protein/genetics , Smad4 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Pancreatic Neoplasms
6.
Cell Rep ; 41(6): 111623, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351408

ABSTRACT

A long-standing question in the pancreatic ductal adenocarcinoma (PDAC) field has been whether alternative genetic alterations could substitute for oncogenic KRAS mutations in initiating malignancy. Here, we report that Neurofibromin1 (NF1) inactivation can bypass the requirement of mutant KRAS for PDAC pathogenesis. An in-depth analysis of PDAC databases reveals various genetic alterations in the NF1 locus, including nonsense mutations, which occur predominantly in tumors with wild-type KRAS. Genetic experiments demonstrate that NF1 ablation culminates in acinar-to-ductal metaplasia, an early step in PDAC. Furthermore, NF1 haploinsufficiency results in a dramatic acceleration of KrasG12D-driven PDAC. Finally, we show an association between NF1 and p53 that is orchestrated by PML, and mosaic analysis with double markers demonstrates that concomitant inactivation of NF1 and Trp53 is sufficient to trigger full-blown PDAC. Together, these findings open up an exploratory framework for apprehending the mechanistic paradigms of PDAC with normal KRAS, for which no effective therapy is available.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Mutation , Pancreatic Ducts/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Neurofibromin 1/metabolism , Pancreatic Neoplasms
7.
Development ; 149(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36205077

ABSTRACT

Notch3 promotes mammary luminal cell specification and forced Notch3 activation can induce mammary tumor formation. However, recent studies suggest a tumor-suppressive role for Notch3. Here, we report on Notch3 expression and functional analysis in the mouse mammary gland. Notch3 is expressed in the luminal compartment throughout mammary gland development, but switches to basal cells with initiation of post-lactational involution. Deletion of Notch3 caused a decrease of Notch activation in luminal cells and diminished luminal progenitors at puberty, as well as reduced alveolar progenitors during pregnancy. Parous Notch3-/- mammary glands developed hyperplasia with accumulation of CD24hiCD49flo cells, some of which progressed to invasive tumors with luminal features. Notch3 deletion abolished Notch activation in basal cells during involution, accompanied by altered apoptosis and reduced brown adipocytes, leading to expansion of parity-identified mammary epithelial cells (PI-MECs). Interestingly, the postpartum microenvironment is required for the stem cell activity of Notch3-/- PI-MECs. Finally, high expression of NOTCH3 is associated with prolonged survival in patients with luminal breast cancer. These results highlight an unexpected tumor-suppressive function for Notch3 in the parous mammary gland through restriction of PI-MEC expansion.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , Animals , Epithelial Cells/metabolism , Female , Lactation , Mice , Mice, Transgenic , Pregnancy , Stem Cells
8.
Front Immunol ; 13: 987298, 2022.
Article in English | MEDLINE | ID: mdl-36090975

ABSTRACT

A critical feature of cancer is the ability to induce immunosuppression and evade immune responses. Tumor-induced immunosuppression diminishes the effectiveness of endogenous immune responses and decreases the efficacy of cancer immunotherapy. In this study, we describe a new immunosuppressive pathway in which adenosine promotes Casitas B-lineage lymphoma b (Cbl-b)-mediated Notch1 degradation, causing suppression of CD8+ T-cells effector functions. Genetic knockout and pharmacological inhibition of Cbl-b prevents Notch1 degradation in response to adenosine and reactivates its signaling. Reactivation of Notch1 results in enhanced CD8+ T-cell effector functions, anti-cancer response and resistance to immunosuppression. Our work provides evidence that targeting the Cbl-b-Notch1 axis is a novel promising strategy for cancer immunotherapy.


Subject(s)
Lymphoma , Neoplasms , Adenosine , CD8-Positive T-Lymphocytes , Humans , Immunotherapy , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
9.
Life Sci Alliance ; 4(2)2021 02.
Article in English | MEDLINE | ID: mdl-33268505

ABSTRACT

Notch signaling exerts both oncogenic and tumor-suppressive functions in the pancreas. In this study, deletion of Jag1 in conjunction with oncogenic Kras G12D expression in the mouse pancreas induced rapid development of acinar-to-ductal metaplasia and early stage pancreatic intraepithelial neoplasm; however, culminating in cystic neoplasms rather than ductal adenocarcinoma. Most cystic lesions in these mice were reminiscent of serous cystic neoplasm, and the rest resembled intraductal papillary mucinous neoplasm. Jag1 expression was lost or decreased in cystic lesions but retained in adenocarcinoma in these mice, so was the expression of Sox9. In pancreatic cancer patients, JAG1 expression is higher in cancerous tissue, and high JAG1 is associated with poor overall survival. Expression of SOX9 is correlated with JAG1, and high SOX9 is also associated with poor survival. Mechanistically, Jag1 regulates expression of Lkb1, a tumor suppressor involved in the development of pancreatic cystic neoplasm. Collectively, Jag1 can act as a tumor suppressor in the pancreas by delaying precursor lesions, whereas loss of Jag1 promoted a phenotypic switch from malignant carcinoma to benign cystic lesions.


Subject(s)
Cell Transformation, Neoplastic/genetics , Jagged-1 Protein/deficiency , Pancreatic Neoplasms/etiology , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Disease Susceptibility , Gene Expression , Humans , Immunohistochemistry , Jagged-1 Protein/metabolism , Mice , Mice, Knockout , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Phenotype , Prognosis , Proto-Oncogene Proteins p21(ras)/metabolism , SOX9 Transcription Factor , Signal Transduction
10.
Front Genet ; 11: 659, 2020.
Article in English | MEDLINE | ID: mdl-32760422

ABSTRACT

It is increasingly appreciated that long non-coding RNAs (lncRNAs) associated with alternative splicing (AS) could be involved in aggressive hepatocellular carcinoma. Although many recent studies show the alteration of RNA alternative splicing by deregulated lncRNAs in cancer, the extent to which and how lncRNAs impact alternative splicing at the genome scale remains largely elusive. We analyzed RNA-seq data obtained from 369 hepatocellular carcinomas (HCCs) and 160 normal liver tissues, quantified 198,619 isoform transcripts, and identified a total of 1,375 significant AS events in liver cancer. In order to predict novel AS-associated lncRNAs, we performed an integration of co-expression, protein-protein interaction (PPI) and epigenetic interaction networks that links lncRNA modulators (such as splicing factors, transcript factors, and miRNAs) along with their targeted AS genes in HCC. We developed a random walk-based multi-graphic (RWMG) model algorithm that prioritizes functional lncRNAs with their associated AS targets to computationally model the heterogeneous networks in HCC. RWMG shows a good performance evaluated by the ROC curve based on cross-validation and bootstrapping strategies. As a conclusion, our robust network-based framework has derived 31 AS-related lncRNAs that not only validates known cancer-associated cases MALAT1 and HOXA11-AS, but also reveals new players such as DNM1P35 and DLX6-AS1with potential functional implications. Survival analysis further provides insights into the clinical significance of identified lncRNAs.

11.
Am J Pathol ; 190(11): 2194-2202, 2020 11.
Article in English | MEDLINE | ID: mdl-32805234

ABSTRACT

The prostate epithelium consists of predominantly luminal cells that express androgen receptor and require androgens for growth. As a consequence, the depletion of testicular androgens in patients with prostate cancer results in tumor regression. However, it eventually leads to a castration-resistant disease that is highly metastatic. In this report, a mouse model of metastatic prostate cancer was generated through the deletion of the tumor-suppressor gene Trp53 in conjunction with oncogenic activation of the proto-oncogene Kras. These mice developed early-onset metastatic prostate cancer with complete penetrance. Tumors from these mice were poorly differentiated adenocarcinoma, characterized by extensive epithelial-mesenchymal transition. With no or a very low level of androgen receptor expression, the tumor cells were resistant to androgen receptor inhibition. Pik3cg, encoding phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit γ (Pi3kγ), was highly expressed in these tumors, and pharmacologic inhibition of Pi3kγ blocked tumor cell growth in vitro, reversed epithelial-mesenchymal transition, and abated tumor metastasis in vivo. Immunohistochemistry analysis in human prostate cancer specimens showed that the expression of PIK3CG was significantly associated with advanced clinical stages. Taken together, these results suggest that PIK3CG plays an important role in the progression and metastasis of prostate cancer, and may represent a new therapeutic target in the metastatic castration-resistant prostate cancer.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Animals , Class Ib Phosphatidylinositol 3-Kinase/genetics , Male , Mice , Mice, Transgenic , Neoplasm Metastasis , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Mas , Receptors, Androgen/genetics
12.
Cancer Manag Res ; 12: 2641-2651, 2020.
Article in English | MEDLINE | ID: mdl-32368142

ABSTRACT

PURPOSE: Molecular targeting is a powerful approach for aggressive claudin-low breast cancer (CLBC). Overexpression of PI3K catalytic subunit gamma (PIK3CG) in human CLBC is offering a promising opportunity for targeted therapies. We utilized a specific inhibitor of PIK3CG combined with paclitaxel (PTX) to treat CLBC cells in vitro and in vivo. PATIENTS AND METHODS: The tumor cells growth and apoptosis in vitro were analyzed by CCK8, plate clone formation assay, tumorsphere assay, Hoechst staining and flow cytometry. The invasion and metastasis ability of tumor cells in vitro were investigated by wound healing and transwell experiments. Critical gene expression levels were checked by qRT-PCR and Western blot. Xenograft models with CLBC cell lines in SCID mice were established to investigate the effect of combined drugs in vivo. RESULTS: We identified that PIK3CG was a potential therapeutic target for CLBC patients. Targeting PIK3CG potentiated CLBC cells growth inhibition in 2D and 3D cultures by PTX. Inhibition of PIK3CG activation could enhance CLBC cells apoptosis and migration suppression induced by PTX. Manipulating autophagy was a validated approach for the use of PIK3CG inhibitor. Using CLBC xenograft mice model, we found that CLBC tumors in vivo could be well treated by combined drugs of PIK3CG inhibitor and PTX. CONCLUSION: We demonstrated that PIK3CG was a potential target for the therapy of CLBC and inhibition of PIK3CG activation could reinforce the therapeutic effect of this aggressive disease by PTX. The combined use of PIK3CG inhibitor and PTX might be a potential regimen for treating this subtype of breast cancer.

13.
Life Sci Alliance ; 3(6)2020 06.
Article in English | MEDLINE | ID: mdl-32371554

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease that remains incurable because of late diagnosis, which renders any therapeutic intervention challenging. Most PDAC patients develop de novo diabetes, which exacerbates their morbidity and mortality. How PDAC triggers diabetes is still unfolding. Using a mouse model of KrasG12D-driven PDAC, which faithfully recapitulates the progression of the human disease, we observed a massive and selective depletion of ß-cells, occurring very early at the stages of preneoplastic lesions. Mechanistically, we found that increased TGF beta (TGF-ß) signaling during PDAC progression caused erosion of ß-cell mass through apoptosis. Suppressing TGF-ß signaling, either pharmacologically through TGF-ß immunoneutralization or genetically through deletion of Smad4 or TGF-ß type II receptor (TßRII), afforded substantial protection against PDAC-driven ß-cell depletion. From a translational perspective, both activation of TGF-ß signaling and depletion of ß-cells frequently occur in human PDAC, providing a mechanistic explanation for the pathogenesis of diabetes in PDAC patients, and further implicating new-onset diabetes as a potential early prognostic marker for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/complications , Carcinoma, Pancreatic Ductal/metabolism , Diabetes Mellitus/etiology , Insulin-Secreting Cells/metabolism , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transforming Growth Factor beta1/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cells, Cultured , Diabetes Mellitus/metabolism , Disease Models, Animal , Disease Progression , Gene Deletion , Mice , Mice, Inbred C57BL , Mice, Transgenic , Prognosis , Receptor, Transforming Growth Factor-beta Type II/genetics , Smad4 Protein/genetics , Transforming Growth Factor beta1/immunology , Transforming Growth Factor beta1/pharmacology
14.
EMBO J ; 38(13): e101067, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31268604

ABSTRACT

A prominent function of TGIF1 is suppression of transforming growth factor beta (TGF-ß) signaling, whose inactivation is deemed instrumental to the progression of pancreatic ductal adenocarcinoma (PDAC), as exemplified by the frequent loss of the tumor suppressor gene SMAD4 in this malignancy. Surprisingly, we found that genetic inactivation of Tgif1 in the context of oncogenic Kras, KrasG12D , culminated in the development of highly aggressive and metastatic PDAC despite de-repressing TGF-ß signaling. Mechanistic experiments show that TGIF1 associates with Twist1 and inhibits Twist1 expression and activity, and this function is suppressed in the vast majority of human PDACs by KrasG12D /MAPK-mediated TGIF1 phosphorylation. Ablating Twist1 in KrasG12D ;Tgif1KO mice completely blunted PDAC formation, providing the proof-of-principle that TGIF1 restrains KrasG12D -driven PDAC through its ability to antagonize Twist1. Collectively, these findings pinpoint TGIF1 as a potential tumor suppressor in PDAC and further suggest that sustained activation of TGF-ß signaling might act to accelerate PDAC progression rather than to suppress its initiation.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nuclear Proteins/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Twist-Related Protein 1/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Metastasis , Nuclear Proteins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Twist-Related Protein 1/genetics
15.
Neoplasia ; 21(8): 810-821, 2019 08.
Article in English | MEDLINE | ID: mdl-31276933

ABSTRACT

Activating mutations and amplification of Kras and, more frequently, signatures for Kras activation are noted in stomach cancer. Expression of mutant KrasG12D in the mouse gastric mucosa has been shown to induce hyperplasia and metaplasia. However, the mechanisms by which Kras activation leads to gastric metaplasia are not fully understood. Here we report that KrasLSL-G12D/+;Pdx1-cre, a mouse model known for pancreatic cancer, also mediates KrasG12D expression in the stomach, causing gastric hyperplasia and metaplasia prior to the pathologic changes in the pancreas. These mice exhibit ectopic cell proliferation at the base of gastric glands, whereas wild-type mice contain proliferating cells primarily at the isthmus/neck of the gastric glands. Notch signaling is decreased in the KrasLSL-G12D/+;Pdx1-cre gastric mucosa, as shown by lower levels of cleaved Notch intracellular domains and downregulation of Notch downstream target genes. Expression of a Notch ligand Jagged1 is downregulated at the base of the mutant gland, accompanied by loss of chief cell marker Mist1. We demonstrate that exogenous Jagged1 or overexpression of Notch intracellular domain stimulates Mist1 expression in gastric cancer cell lines, suggesting positive regulation of Mist1 by Notch signaling. Finally, deletion of Jagged1 or Notch3 in KrasLSL-G12D/+;Pdx1-cre mice promoted development of squamous cell carcinoma in the forestomach, albeit short of invasive adenocarcinoma in the glandular stomach. Taken together, these results reveal downregulation of Notch signaling and Mist1 expression during the initiation of Kras-driven gastric tumorigenesis and suggest a tumor-suppressive role for Notch in this context.


Subject(s)
Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Metaplasia/genetics , Metaplasia/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Notch/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Humans , Hyperplasia , Immunohistochemistry , Jagged-1 Protein/metabolism , Metaplasia/pathology , Mice , Mice, Transgenic , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, Notch/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
16.
PLoS Genet ; 14(9): e1007660, 2018 09.
Article in English | MEDLINE | ID: mdl-30188892

ABSTRACT

FGF signaling is a potent inducer of lacrimal gland development in the eye, capable of transforming the corneal epithelium into glandular tissues. Here, we show that genetic ablation of the Pea3 family of transcription factors not only disrupted the ductal elongation and branching of the lacrimal gland, but also biased the lacrimal gland epithelium toward an epidermal cell fate. Analysis of high-throughput gene expression and chromatin immunoprecipitation data revealed that the Pea3 genes directly control both the positive and negative feedback loops of FGF signaling. Importantly, Pea3 genes are also required to suppress aberrant Notch signaling which, if gone unchecked, can compromise lacrimal gland development by preventing the expression of both Sox and Six family genes. These results demonstrate that Pea3 genes are key FGF early response transcriptional factors, programing the genetic landscape for cell fate determination.


Subject(s)
Cell Differentiation/genetics , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Lacrimal Apparatus/growth & development , Transcription Factors/metabolism , Animals , Epidermal Cells/physiology , Epithelial Cells/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lacrimal Apparatus/cytology , Mice , Mice, Knockout , Organ Culture Techniques , Receptors, Notch/metabolism , SOX Transcription Factors/genetics , SOX Transcription Factors/metabolism , Transcription Factors/genetics
17.
Elife ; 72018 04 09.
Article in English | MEDLINE | ID: mdl-29629872

ABSTRACT

Notch signalling maintains stem cell regeneration at the mouse intestinal crypt base and balances the absorptive and secretory lineages in the upper crypt and villus. Here we report the role of Fringe family of glycosyltransferases in modulating Notch activity in the two compartments. At the crypt base, RFNG is enriched in the Paneth cells and increases cell surface expression of DLL1 and DLL4. This promotes Notch activity in the neighbouring Lgr5+ stem cells assisting their self-renewal. Expressed by various secretory cells in the upper crypt and villus, LFNG promotes DLL surface expression and suppresses the secretory lineage . Hence, in the intestinal epithelium, Fringes are present in the ligand-presenting 'sender' secretory cells and promote Notch activity in the neighbouring 'receiver' cells. Fringes thereby provide for targeted modulation of Notch activity and thus the cell fate in the stem cell zone, or the upper crypt and villus.


Subject(s)
Homeostasis , Intercellular Signaling Peptides and Proteins/metabolism , Intestines/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptors, Notch/metabolism , Stem Cells/cytology , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cell Differentiation , Cell Proliferation , Cells, Cultured , Glucosyltransferases , Glycosyltransferases , Intercellular Signaling Peptides and Proteins/genetics , Intestines/cytology , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteins/physiology , Receptors, G-Protein-Coupled/physiology , Receptors, Notch/genetics , Signal Transduction , Stem Cells/metabolism
18.
Oncol Lett ; 15(2): 2105-2110, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29434912

ABSTRACT

Pancreatic cancer is one of the leading causes of cancer-associated mortality. The understanding of the expression pattern of key protein factors and their function in pancreatic cancer cells is therefore vital for the diagnosis and treatment of this malignancy. The results of the present study reveal that the levels of neurogenic locus notch homolog protein 2 (Notch2) and phosphorylated (p)-SMAD family member 2 decreased, whereas the expression of Notch3 and phosphoinositide-3 kinase catalytic subunit-γ protein increased in human pancreatic cancer tissues compared with tumor-adjacent tissues. Using the human pancreatic cancer MIA PaCa-2 cell line, it was observed that retinoblastoma-associated protein (RB) and p-RB expression were inhibited and p-AKT was upregulated when Notch signaling was activated in MIA PaCa-2 cells. Furthermore, inhibition of phosphoinositide-3 kinase catalytic subunit-γ (PIK3CG) activity by AS-605240 was able to block the growth and migration of MIA PaCa-2 cells. In conclusion, the results of the present study demonstrate that the Notch signal pathway may be involved in pancreatic carcinogenesis by modulating RB and p-AKT. PIK3CG may therefore be a potential target gene for the treatment of pancreatic cancer.

19.
Oncoscience ; 4(9-10): 131-138, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29142904

ABSTRACT

BACKGROUND: Kras mutations and increased Notch activation occur frequently in gallbladder cancer. However, their roles in gallbladder carcinogenesis have not been defined. This study was aimed at determining whether expression of mutant Kras was sufficient to induce gallbladder carcinoma and whether Notch deregulation played a role in this context. METHODS: We determined Cre recombination activity of Pdx1-Cre in the gallbladder using a reporter strain and examined gallbladder tumor development in the KrasLSL- G12D/+;Pdx1-Cre mice. We analyzed expression of Notch pathway genes in the mouse gallbladder by immunohistochemistry, quantitative RT-PCR, and Western blot analysis. We also determined the effect of Jag1 deletion on Kras-induced gallbladder tumor development. RESULTS: Pdx1-Cre exhibits robust recombination activity in the gallbladder epithelium. KrasLSL-G12D/+;Pdx1-Cre mice form early onset adenoma in the gallbladder and adjacent biliary tract with complete penetrance, albeit short of invasive adenocarcinoma. KrasG12D upregulates expressions of Notch2, Notch3, Notch4, Jag1 and downstream target genes Hes1, Hey1 and Hey2, and deletion of Jag1 partially suppresses KrasG12D-induced adenoma development. CONCLUSIONS: KrasG12D induces gallbladder adenoma and Notch plays a key role in Kras-initiated gallbladder tumorigenesis.

20.
Neoplasia ; 19(11): 885-895, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28938159

ABSTRACT

Claudin-low breast cancer (CLBC) is a poor prognosis molecular subtype showing stemness and mesenchymal features. We previously discovered that deletion of a Notch signaling modulator, Lunatic Fringe (Lfng), in the mouse mammary gland induced a subset of tumors resembling CLBC. Here we report that deletion of one copy of p53 on this background not only accelerated mammary tumor development but also led to a complete penetrance of the mesenchymal stem-like phenotype. All mammary tumors examined in the Lfng/p53 compound mutant mice displayed a mesenchymal/spindloid pathology. These tumors showed high level expressions of epithelial-to-mesenchymal transition (EMT) markers including Vimentin, Twist, and PDGFRα, a gene known to be enriched in CLBC. Prior to tumor onset, Lfng/p53 mutant mammary glands exhibited increased levels of Vimentin and E-cadherin, but decreased expressions of cytokeratin 14 and cytokeratin 8, accompanied by elevated basal cell proliferation and an expanded mammary stem cell-enriched population. Lfng/p53 mutant glands displayed increased accumulation of Notch3 intracellular fragment, up-regulation of Hes5 and down-regulation of Hes1. Analysis in human breast cancer datasets found the lowest HES1 and second lowest LFNG expressions in CLBC among molecular subtypes, and low level of LFNG is associated with poor survival. Immunostaining of human breast cancer tissue array found correlation between survival and LFNG immunoreactivity. Finally, patients carrying TP53 mutations express lower LFNG than patients with wild type TP53. Taken together, these data revealed genetic interaction between Lfng and p53 in mammary tumorigenesis, established a new mouse model resembling CLBC, and may suggest targeting strategy for this disease.


Subject(s)
Breast Neoplasms/genetics , Glycosyltransferases/genetics , Mesenchymal Stem Cells/physiology , Neoplastic Stem Cells/physiology , Tumor Suppressor Protein p53/genetics , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Claudins/genetics , Claudins/metabolism , Female , Glycosyltransferases/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Survival Rate/trends , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...